Cancer Bioinformatics Infrastructure Objects (caBIO)

1.0 caBIO Overview

The caBIO object modeling effort is an on-going effort to model the genomic domain. The caBIO objects simulate the behavior of actual genomic components such as genes, chromosomes, sequences, libraries, clones, ontologies, etc. They provide access to a variety of genomic data sources including GenBank, Unigene, LocusLink, Homologene, Ensemble, GoldenPath, and NCICB’s CGAP (Cancer Genome Anatomy Project) data repositories.

The caBIO infrastructure exhibits an n-tiered architecture with client interfaces, server components, back-end objects and data sources (See Figure 1-1). Clients (browsers, applications) can receive information (HTML and XML) from back-end objects over HTTP. Java applications can also communicate with back-end objects via the domain objects provided by the caBIO JAR. While Non-Java based applications will communicate via SOAP. Server components communicate with back-end objects via Java RMI. Back-end objects communicate directly with data sources (database, URLs, flat files). A UDDI registry will be configured to advertise services. RDF is currently used to advertise services to crawlers and agents.

[image: image6.png]
Figure 1-1: caBIO Architecture

The client technology of caBIO utilizes industry standard web browsers such as Netscape 4+ and IE 4+ keeping client software costs to a minimum. Applications that implement the Java programming language, an object-oriented language, which provides portability and many other features, can utilize caBIO directly through the domain objects provided by caBIO. The network details of the communication to the caBIO server are abstracted away from the developer. Hence the developers need not deal with issues such as RMI and can instead concentrate on the biological problem domain. Non-Java Applications such as Perl, C, are used extensively for bioinformatics tools, caBIO allows these applications use SOAP clients to interface with caBIO. The Simple Object Access Protocol is a lightweight XML based protocol for the exchange of information in a decentralized, distributed environment. It consists of an envelope that describes the message and a framework for message transport. caBIO uses the open source Apache SOAP package to provide its web services to users. The Perl, C, or C++ tools can use such pakages as SOAP::Lite for Perl allow for developers to communicate with the caBIO objects in a straight forward manner. Since all caBIO objects are “XML Aware”, they are capable of serializing themselves to XML for transport to a wide variety of platforms. The cabIO server can utilize RDF (Resource Description Framework) that is a foundation that advertises Web services via the Web. RDF is used to describe the content and services available at a particular Web site. This technology allows intelligent agents to discover and use the web services offered by the caBIO server.

For the presentation layer (See Figure 1-2) caBIO uses Jakarta Tomcat the servlet+JSP Engine, which is a subproject of the Jakarta Project (Apache). The JSPs, Java Server Pages, are web pages with Java embedded in the HTML to incorporate dynamic content in the page. caBIO also has Java Servlets, Server-side Java programs that web servers can run to generate content in response to client requests For any logic on the presentation layer caBIO has Java Beans, reusable software components that work with Java. All caBIO objects can be transformed into XML, the extensible markup language is a universal format for structured data on the Web. By using XSL/XSLT, the extensible stylesheet language is a language for expressing stylesheets and XSL Transformations (XSLT) is a language for transforming XML documents, nonprogrammers can transform the information in the caBIO objects for use in documents or other systems. The caBIO objects use Xlink, the XML linking language to control the amount of information returned from a single XML call. Xlink allows the lazy retrieval of XML from the caBIO server increase the efficiency of its utilization.

[image: image2.png]
Figure 1-2: caBIO Presentation Layer

The caBIO Object Layer is what most developers will use in order to access the information available from the caBIO server. The caBIO domain objects (Genes, Pathways, Sequences, etc.) are available directly from the caBIO jar file that is provided to the developers. . The caBIO objects (See Figure 1-3) simulate the behavior of actual genomic components such as genes, chromosomes, sequences, libraries, clones, ontologies, etc.

[image: image3.png]
Figure 1-3: caBIO Domain Object Model

All network and persistence details are abstracted away from the developers. The caBIO objects include the behavior (operations) and the relationships that the actual genomic objects have. Hence a gene can get its EST’s, SNP’s or clones. caBIO includes Object Managers (See Figure 1-4) that are created to implement complex scientific concepts such as pathways and protocols

[image: image4.png]
.

Figure 1-4: caBIO Object Managers

The caBIO Data Access Objects (See Figure 1-5) allow for platform independent persistence of the caBIO objects. The objects provide object relational mapping that is optimized for the data warehouse queries presented by the domain objects. The implementation of the data access layer allows the domain objects to act independently of the actual storage of the data. This allows the data layer to migrate as necessary to increase performance or access to new data stores without impact the programs, which utilize the domain objects. The persistence layer can provide access to RDMS, flat files (Genbank /EMBL), HTTP or DAS (Distubuted Annotation System) sources.

[image: image5.png]

Figure 1-5: caBIO Data Access Objects

The caBIO data access objects have been optimized to cache and process the large amounts of data present in a genomic warehouse. Throttling mechanisms are created to control the flow of data through the system so optimal response is given to all users of the system. The system allows for private access to data areas as developers extend the caBIO objects.

PAGE
1
[image: image1.png]

